Energiequelle Methanhydrat
Kieler Forschernetzwerk hält Nutzung frühestens in zehn Jahren für möglich. In den Tiefen der Ozeane findet sich ein ganz besonderer Schatz: Methanhydrat, besser bekannt als Methaneis. Die brennbare Substanz aus gefrorenem Wasser und Methan wird bereits seit längerem als Energiequelle der Zukunft gehandelt. Doch ein Abbau scheint schwierig – zumindest bisher.
„Die Förderung und Nutzung von Methanhydraten wird frühestens in zehn Jahren möglich sein“, sagt Prof. Dr. Klaus Wallmann vom Kieler Forschernetzwerk „Ozean der Zukunft“. Im Netzwerk haben sich Vertreter verschiedener Fachdisziplinen zusammengeschlossen, um Potenziale und Gefahren des Meeres auszuloten. Ein Schwerpunktthema ist dabei auch die Erforschung der Methanhydrate.
Forscher schätzen, dass die Vorräte an Methanhydraten fast doppelt so viel Energie wie alle Erdöl-, Erdgas– und Kohlelagerstätten der Erde zusammen liefern können. Prof. Dr. Klaus Wallmann, Koordinator des Netzwerkes: „Angesichts der aktuellen Debatte um die Energieversorgung der Zukunft ist es wichtig, den Entstehungsprozess sowie die ökologischen, ökonomischen und rechtlichen Aspekte dieser Ressource bereits heute intensiv zu erforschen.“ Das Kieler Forschernetzwerk „Ozean der Zukunft“ widmet sich daher fachbereichsübergreifend dieser Thematik. Ob Ozeanographen, Biologen, Geologen, Meteorologen, Ökonomen und Juristen oder Chemiker – zahlreiche Experten rund um die Kieler Universität erforschen Chancen und Risiken, die eine Nutzung des „weißen Goldes“ mit sich bringen könnte.
Gasblasen sind wichtigster Indikator für förderungswürdiges Methaneis. Eines der Hauptprobleme: Der Abbau könnte sich wirtschaftlich nur lohnen, wenn Ozeanareale gefunden werden, in denen Methanhydrat in ausreichenden Mengen vorkommt. In einer aktuellen Untersuchung sind die Meeresforscher am Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) – ebenfalls Teil des Netzwerks „Ozean der Zukunft“ – der Nutzung jetzt einen Schritt näher gekommen. Sie haben den Entstehungsprozess von Methanhydraten im Blake Ridge (Westatlantik) analysiert haben. Das Ergebnis: Größere Mengen des Hydrats entstehen hauptsächlich durch folgenden, bereits früher erforschten Mechanismus: Gasblasen steigen aus einer Tiefe von ein bis drei Kilometern unterhalb des Meeresbodens auf und gefrieren in ca. 100 bis 500 Meter tiefen Sedimenten zu Gashydrat, da nur hier der Stoff stabil ist. Diese aufsteigenden Gasblasen lassen sich mit Hilfe von Schallwellen orten.
Vor einer künftigen Nutzung von Methaneis gilt es noch viele Fragen zu klären. Ohne den lastenden Druck der Tiefsee und niedrige Temperaturen zerfällt das Hydrat beispielsweise in kurzer Zeit in seine Bestandteile. Bei der Bergung könnten daher erhebliche Mengen des klimaschädlichen Methans in die Atmosphäre gelangen, und auch seine Verbrennung würde den Treibhauseffekt verschärfen. Wie könnte man den Abbau nachhaltig gestalten? Um diese Frage zu klären, untersuchen die Mitglieder des Kieler Forschernetzwerks daher auch, ob es sinnvoll wäre, abgebautes Methaneis durch das Treibhausgas Kohlendioxid, das bei der Verbrennung von fossilen Energieträgern entsteht, im Meeresboden zu ersetzen. In Zusammenarbeit mit Wirtschaftswissenschaftlern soll dabei auch überprüft werden, ob ein CO2-neutraler Abbau sich ökonomisch rechnen würde.
Quelle: Susanne Schuck, Christian-Albrechts-Universität Kiel – 10.03.2006
Geonet News vom 13.03.2006